A novel association of the SMN protein with two major non-ribosomal nucleolar proteins and its implication in spinal muscular atrophy.

نویسندگان

  • Suzie Lefebvre
  • Philippe Burlet
  • Louis Viollet
  • Solange Bertrandy
  • Céline Huber
  • Caroline Belser
  • Arnold Munnich
چکیده

Spinal muscular atrophy (SMA) is caused by the loss of functional survival motor neuron 1 (SMN1) protein. This ubiquitously expressed protein is a component of a novel complex immunodetected in both the cytoplasm and the nucleus, which is associated with complexes involved in mRNA splicing, ribosome biogenesis and transcription. Here, we study a mutant protein corresponding to the N-terminal half of the protein that is encoded by the SMA frameshift mutation SMN 472del5. We show by confocal microscopy that the resulting mutant protein exhibits various distribution patterns in different transiently transfected COS cells. The mutant distributes into the nucleoplasm and/or the nucleolus, whereas the normal SMN protein accumulates at discrete nucleocytoplasmic dot-like structures previously named gems/Cajal bodies. The cell population with the nucleolar distribution is enriched upon treatment with mimosine, a synchronizing drug in late G(1) phase. Co-immunoprecipitation studies carried out on nuclear extracts reveal that both the endogenous SMN and mutant proteins are associated with complexes containing two major non-ribosomal nucleolar proteins, namely nucleolin and protein B23, and that the association is mediated, by among other things, RNA moieties. Both the association of the SMN protein with nucleolin-containing complexes and the nucleolin/B23 complex are disrupted in fibroblasts derived from a type I SMA patient harboring a homozygous SMN1 gene deletion. These findings suggest that altered assembly and/or stability of ribonucleoprotein complexes may contribute to the pathophysiological processes in SMA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct interaction of the spinal muscular atrophy disease protein SMN with the small nucleolar RNA-associated protein fibrillarin.

Disruption of the survival motor neuron (SMN) gene leads to selective loss of spinal motor neurons, resulting in the fatal human neurodegenerative disorder spinal muscular atrophy (SMA). SMN has been shown to function in spliceosomal small nuclear ribonucleoprotein (snRNP) biogenesis and pre-mRNA splicing. We have demonstrated that SMN also interacts with fibrillarin, a highly conserved nucleol...

متن کامل

Spinal Muscular Atrophy: A Short Review Article

Spinal muscular atrophy (SMA) is a genetic disorder which affect nervous system and is characterized with progressive distal motor neuron weakness. The survival motor neuron (SMN) protein level reduces in patients with SMA. Two different genes code survival motor neuron protein in human genome. Skeletal and intercostal muscles denervation lead to weakness, hypotony, hyporeflexia, respiratory fa...

متن کامل

The survival of motor neurons (SMN) protein interacts with the snoRNP proteins fibrillarin and GAR1

BACKGROUND The survival of motor neurons (SMN) protein is the protein product of the spinal muscular atrophy (SMA) disease gene. SMN and its associated proteins Gemin2, Gemin3, and Gemin4 form a large complex that plays a role in snRNP assembly, pre-mRNA splicing, and transcription. The functions of SMN in these processes are mediated by a direct interaction of SMN with components of these mach...

متن کامل

The exon 2b region of the spinal muscular atrophy protein, SMN, is involved in self-association and SIP1 binding.

Spinal muscular atrophy (SMA) is caused by mutations in the SMN (survival of motor neurons) gene and there is a correlation between disease severity and levels of functional SMN protein. Studies of structure-function relationships in SMN protein may lead to a better understanding of SMA pathogenesis. Self-association of the spinal muscular atrophy protein, SMN, is important for its function in ...

متن کامل

polII RNA polymerase II RNP ribonucleoprotein SMA spinal muscular atrophy SMN survival of motor neurons snRNP small nuclear RNP snoRNP small nucleolar RNP UsnRNP uridine-rich snRNP

Spinal muscular atrophy is a common, often lethal, neurodegenerative disease that results from low levels of, or loss-of-function mutations in, the SMN (survival of motor neurons) protein. SMN oligomerizes and forms a stable complex with five additional proteins: Gemins 2–6. SMN also interacts with several additional proteins referred to as ‘substrates’. Most of these substrates contain a domai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 11 9  شماره 

صفحات  -

تاریخ انتشار 2002